PERCENT- An open access tool to predict environmental Pb concentrations and their possible impacts on soils.

Anika Sidler^{1,2}, Bastien Vallat¹ Andreas Schäffer², Markus Lenz^{1,3}

Markus.Lenz@fhnw.ch

Although a possible environmental risk (i.e. probability × impact) of lead (Pb) leaching from perovskite solar cells (PSCs) is frequently highlighted, it is seldomly quantified. The possible negative environmental impact on protected entities will depend on the concentration of Pb, as well as its speciation and the transfer within the exposure pathway considered. Obviously, there is a physical limit to thickness of the perovskite layer in photovoltaics and thus a limit to the amount of Pb that can leach and enter surface waters, sediments soils, and ultimately biota. We have come across several studies that use unrealistic assumptions about leaching, which end up misrepresenting the actual Pb concentrations and impacts.

To realistically assess potential environmental risks, we have developed an open-access web tool called "PERCENT" (PERovskite leaChing assEssmeNt Tool). This tool allows both professionals and the public to interactively estimate the predicted environmental concentrations (PECs) of Pb in soils. The tool allows the user to set factors such as PSC composition, Pb layer thickness, module area and soil volume affected. Based on the PECs calculated, the user is provided with a context menu to explain possible impacts to be expected at such Pb soil concentrations. These are based on regulations of Swiss soil protection, which are well detailed, documented and publicly available. All assumptions and calculations are documented, which offers a transparent approach to address potential concerns of the public as well as to verify and modify own assumptions by the perovskite community.

We demonstrate the tool using different scenarios on perovskite composition and extent of leaching. We then put the calculated PECs as well as indicated impacts into perspective in terms of soil fertility as well as food and fodder production (again, following Swiss regulations). Our findings indicate that Pb leaching from typical PSCs under most assumptions presents no to minimal impacts on soils themselves as well as through soil usage.

Acknowledgements:

This work has received funding form the Swiss State Secretariat for Education, Research and innovation (SERI) and from the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or RIA. Neither the European Union nor the granting authority can be held responsible for them. NEXUS and PEARL projects have received funding from the European Union's Horizon Europe research and innovation program under grant agreements No. 101075330 and 101122283, resp.

¹ Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts North-western Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland

² Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany ³ Department of Environmental Technology, Wageningen University, 6708 PB, Wageningen, the Netherlands

^[1] Schmidt, F. et al., J. Haz. Mat. 2022, 436, 128995.

^[2] Huang, H. et al., Soil Security, 2024, 15, 100150.